Asymptotic normality and efficiency of two Sobol index estimators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Normality and Efficiency of Two Sobol Index Estimators

Introduction 1 1. Definition and estimation of Sobol indices 2 1.1. Exact model 2 1.2. Estimation of S 3 2. Asymptotic properties: exact model 4 2.1. Consistency and asymptotic normality 4 2.2. Asymptotic efficiency 6 3. Asymptotic properties: metamodel 8 3.1. Metamodel-based estimation 8 3.2. Consistency and asymptotic normality 8 3.3. Asymptotic efficiency 11 4. Numerical illustrations 12 4.1...

متن کامل

Asymptotic Normality for Deconvolving Kernel Density Estimators

Suppose that we have 11 observations from the convolution model Y = X + £, where X and £ are the independent unobservable random variables, and £ is measurement error with a known distribution. We will discuss the asymptotic normality for deconvolving kernel density estimators of the unknown density f x 0 of X by assuming either the tail of the characteristic function of £ behaves as II I~Oexp(...

متن کامل

Asymptotic relative efficiency of estimators

For statistical estimation problems, it is typical and even desirable that more than one reasonable estimator can arise for consideration. One natural and time-honored approach for choosing an estimator is simply to compare the sample sizes at which the competing estimators meet a given standard of performance. This depends upon the chosen measure of performance and upon the particular populati...

متن کامل

Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators

Barron (1993) obtained a deterministic approximation rate (in L2-norm) of r-l12. for a class of single hidden layer feedforward artificial neural networks (ANN) with r hidden units and sigmoid activation functions when the target function satisfies certain smoothness conditions. Hornik, Stinchcombe, White, and Auer (HSWA, 1994) extended Barron's result to a class of ANNs with possibly non-sigmo...

متن کامل

Asymptotic Normality of Kernel Type Density Estimators for Random Fields

Kernel type density estimators are studied for random fields. It is proved that the estimators are asymptotically normal if the set of locations of observations become more and more dense in an increasing sequence of domains. It turns out that in our setting the covariance structure of the limiting normal distribution can be a combination of those of the continuous parameter and the discrete pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Probability and Statistics

سال: 2014

ISSN: 1292-8100,1262-3318

DOI: 10.1051/ps/2013040